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Abstract

Our supplementary material is organized as follows:
First, for completeness, we provide more details on the net-
work pipeline to assist notations, symbols, and equation
clarification. Next, we extend the experimental evaluations
supplied in the main paper. Specifically, we supply an addi-
tional statistical comparison with the TSDF fusion method.
As highlighted in the main paper, the global metric may not
be a true reflection of the recovered surface topology; there-
fore, we additionally compare the mesh quality of the recov-
ered surfaces with the baselines to demonstrate the superi-
ority of our approach. Our supplementary also includes a
video that demonstrates the visual results. We highly rec-
ommend the reader to check our video.

A. Further Clarification
Although we present a dense description of our pro-

posed method and experimental evaluations, we want to
provide more details for completeness and further clarifi-
cation. To that end, we define our evaluation metrics with
explicit mathematical formulations. We also reiterate the
PatchMatch based deep-MVS network pipeline by clarify-
ing the notations, symbols, and equations.

A.1. Evaluation Metrics

Our quantitative analysis is based on Chamfer-L1 dis-
tance, precision and F-score on the reconstructed and
ground-truth point sets: R,G ⊂ R3. For a single recon-
structed point r ∈ R, distance to the ground-truth is defined
as follows:

dr→G = min
g∈G

∥r − g∥ . (1)

The individual distance measures are accumulated to define
Chamfer-L1 distance and F-score as follows:

CD =
1

2|X1|
∑
x∈X1

dx→X2 +
1

2|X2|
∑
x∈X2

dx→X1 , (2)
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F(τ) =
2P (τ)R(τ)

P (τ) +R(τ)
, (3)

where

P (τ) =
1

|R|
∑
r∈R

[dr→G < τ ], (4)

R(τ) =
1

|G|
∑
g∈G

[dg→R < τ ], (5)

stand for precision and recall measures respectively. Here,
[.] is the Iverson bracket and τ is the distance threshold.

A.2. Network Design

This section provides a detailed description of our Patch-
Match based deep-MVS network [59] which we use to es-
timate the per-pixel depth. We start by explaining why we
prefer this framework in our approach. Then, we provide
an in-depth description of the network pipeline for better
understanding.
• Why PatchMatch based deep-MVS network? MVS
aims for the reconstruction of the dense 3D geometry given
a collection of images with known camera parameters. Tra-
ditional approaches generally rely on hand-crafted features
to find the correspondences among different views and per-
form triangulation to reconstruct the scene [12]. Despite the
practical applicability of the traditional MVS, it is still frag-
ile against illumination changes, occlusions, non-textured
areas, and non-Lambertian surfaces. In recent years, many
deep learning-based MVS methods have been proposed to
overcome such challenges by utilizing the power of neu-
ral networks [7, 40, 67, 69]. However, common deep MVS
methods require large GPU memory, provide inferior run-
time performance, and therefore, are not applicable to full
resolution scenes. To mitigate these shortcomings, we use a
PatchMatch based deep MVS network in our approach [59].

Traditional PatchMatch puts forward a randomized and
iterative algorithm to find approximate nearest-neighbor
matches between image patches [2]. The extension of the
algorithm is used in the scene space for better-performing
MVS [3, 16, 66, 71]. The PatchMatch based MVS is fast,
allows for sub-pixel precision, and handles foreshortening
problems for large baseline stereo setups. Consequently,



our PatchMatch based deep MVS network demonstrates all
these benefits with low memory requirements and fast run-
time capabilities, making it an ideal choice for our problem.
• Learning-based PatchMatch Network. Similar to
PatchMatch algorithm [2], the PatchMatch based deep-
MVS network employs [2] via similar three steps (but in 3d
scene space) as follows: (i) Initialization step: Generating
depth hypotheses, (ii) Propagation step: Propagate the hy-
potheses to neighbors, and (iii) Evaluation step: Compute
the similarity cost and search for best solution. We apply
these steps on per-pixel multi-scale features that are hierar-
chically extracted from MVS images Y at M different res-
olution scales [37, 59]. This allows us to estimate depth in
a coarse-to-fine manner. Before providing more details on
these iterative steps, we reintroduce the notation for clarifi-
cation. We denote the reference frame by Y r ∈ Rw×h, co-
ordinates of the ith pixel by yi, frame r feature by Φr, and
camera r intrinsic calibration matrix by Kr. For each refer-
ence frame, we pick Ns source frames where Y s ∈ Rw×h

denotes a source frame. (Rr,s, tr,s) denotes the relative
motion between frame r and s. We skip to add extra no-
tation for stage number for simplicity of writing.
(i) Initialization. In the first iteration, we randomly sample
per pixel Df depth hypotheses in the pre-defined inverse
depth range [dmin, dmax]. Our sampling strategy ensures
that the inverse depth range interval sampled into Df hy-
potheses is proper, and one hypothesis is covered at each
interval. Once initialized, local perturbations are invoked in
the subsequent iteration at each stage to diversify the hy-
potheses and make the method robust to front-to-parallel
surface issues [3]. For local perturbation, per pixel, Nm

l

hypotheses are generated at stage m in the normalized in-
verse depth range Rm.
(ii) Propagation. Let Φr denote the reference feature map,
ϵj the fixed 2D offset for depth hypothesis j, and ϵ̃j(yi) the
learnable 2D offset for pixel i at coordinates yi. A 2D CNN
is applied on Φr to learn the 2D offset for each pixel. The
depth hypotheses Dp at pixel i is obtained as follows:

Dp(yi) = {D(yi + ϵj + ϵ̃j(yi))}
Nm

d
j=1 (6)

where, Nm
d denotes the number of depth hypotheses at stage

m and D denotes the depth map in the last iteration. The
learnable offset idea based on features allows to gather the
hypotheses from the same surface rather than in the fixed
set of neighbors, hence it is faster and more accurate.
(iii) Evaluation. Let Φr(yi), Φs(ys,j

i ) ∈ RC be the refer-
ence feature and the warped source feature maps of pixel i
and depth hypothesis dj , respectively. Here, C is the num-
ber of feature channels. We get yi,j via warping as follows:

ys,j
i = Ks

(
Rr,s

(
dj(yi) ·K−1

r yi

)
+ tr,s

)
(7)

Next Φs(ys,j
i ) is obtained using differentiable bi-linear in-

terpolation. To get the matching cost, we must sum per pixel
cost from all the views and the depth hypotheses. For that,
the cost per depth hypothesis is computed using group-wise
correlation and aggregated over the number of views with
per-pixel visibility weight [55, 68]. If G denotes the num-
ber of groups into which the feature maps are divided along
channel dimension, then gth group similarity ∆g

s ∈ R for
source view s is given by:

∆g
s(yi, j) = Λ < Φr

g(yi),Φ
s
g(y

s,j
i ) > (8)

Here, Λ ∈ R is the ratio of number of group to number of
channels. Collecting the group similarity for all the pixels
and over hypotheses gives ∆s ∈ Rw×h×D×G. For vector-
ized usage, let ∆s(yi, j) ∈ RG denote the respective group
similarity vector. To incorporate the visibility information
per pixel ws(yi) in the source image Y s, a network com-
posed of 3D convolutional layer with 1× 1× 1 kernels and
sigmoid activation is used. This simple pixel-wise network
takes the initial set of group similarity ∆s to provide the
visibility weight measure Ws ∈ Rw×h×D for a pixel in the
range 0 to 1. Accordingly, the view weight is computed
as ws(yi) = max({Ws(yi, j)}D−1

j=0 ). Using the visibility
weight, the weighted group similarity ∆̃(yi, j) for pixel i
and jth depth hypothesis is computed as:

∆̃(yi, j) =
( Ns∑
s=1

ws(yi)
)−1( Ns∑

s=1

ws(yi)∆s(yi, j)
)

(9)

The weighted group similarity over all the pixels and hy-
potheses is computed as ∆̃ ∈ Rw×h×D×G. To get the cost
J ∈ Rw×h×D per pixel and depth hypothesis, a 3D convo-
lution network with 1× 1× 1 kernel is applied on ∆̃.

For aggregating the matching cost, an adaptive propaga-
tion strategy is followed. Similar to the propagation strategy
per pixel, an additional spatial offset ỹt

i per pixel i is learnt
based on the AANet [3, 65]. For a spatial window with Nw

pixels, the spatial cost aggregation is computed as

J̃(yi, j) =
( Nw∑
t=1

wt · d̃t
)−1( Nw∑

t=1

wt · d̃t ·J(yi+yt
i+ ỹt

i , j)
)

(10)
yt
i is the pixel coordinates within the window. dt and wt

∀ t ∈ [1, Nw] are the weights per pixel based on the depth
hypotheses and feature similarity, respectively. Feature
weight at a sampled location is based on the feature simi-
larity between corresponding features in Φr and yi, which
is computed via group-wise correlation [20]. Whereas, the
depth weights are based on the absolute difference in the in-
verse depth between the sampled location and yi using jth

hypotheses. To regress the depth per pixel, we apply soft-



max (σ) to J̃(y, j) which gives the confidence measures C
of the estimation.

D(yi) =

D−1∑
j=0

dj(yi) · σ(J̃(yi, j)) (11)

Further, an independent depth residual network based on
Hui et al. work [26] is used to obtain the refined depth map
Dref . It extracts the features ΦD from D, the ΦI from Y r,
and upscale ΦD to image size via deconvolution. Both of
these features are concatenated and subsequently multiple
2D convolution layers are used to compute the depth resid-
ual. For more details on the PatchMatch based deep-MVS
network, refer [59].

B. Additional Results
In this section, we extend the experimental results in

the main paper by providing further statistical analysis and
qualitative comparisons.

B.1. Comparison with Standard TSDF Fusion
In the main paper, we already provided the compara-

tive results on two subjects. Table(1) provides F-score and
Chamfer-L1 metric stats for the rest of the DiLiGenT-MV
subjects. Clearly, the results show the superiority of our
approach against the classical TSDF Fusion approach [9].

Method Type → TSDF Fusion [9] Ours
Dataset↓ | Metric → F-score (↑) Chamfer-L1 (↓) F-score (↑) Chamfer-L1 (↓)

BEAR 0.129 4.624 0.895 0.415
BUDDHA 0.398 2.069 0.922 0.455

COW 0.192 3.392 0.979 0.329
POT2 0.056 6.100 0.907 0.515

READING 0.314 2.238 0.970 0.355
AVERAGE 0.218 3.685 0.935 0.414

Table 1. Comparison of the reconstruction quality with TSDF Fu-
sion [9], which is a standard method of choice for robust 3D fusion
(outlier removal). We use F-score (higher is better) and Chamfer-
L1 (lower is better) metrics for statistical evaluation.

B.2. Quality of Reconstructed Surface Geometry
Extending the qualitative analysis in the main paper,

we demonstrate the quality of the recovered meshes for
DiLiGenT-MV objects. Fig.1-Fig.4 show the colored Wire-
frame model comparison of the object surface recovered us-
ing our approach, B-MVPS [36] and GT. The visualizations
show that the distribution of the geometric primitives of B-
MVPS [36] is irregular and unevenly distributed. Simi-
larly, Fig.5-Fig.9 show the quality of the meshes compared
to NeRF [43], R-MVPS [49], and B-MVPS [36]. Overall,
it can be observed that our method provides surfaces which
are superior in quality, regular, hence more useful for ge-
ometry processing applications.

B-MVPS Ours Ground-Truth

Figure 1. Colored Wireframe qualitative comparison with SOTA
B-MVPS [36] on BUDDHA.

B-MVPS Ours Ground-Truth
Figure 2. Colored Wireframe qualitative comparison with SOTA
B-MVPS [36] on COW.

B-MVPS Ours Ground-Truth

Figure 3. Colored Wireframe qualitative comparison with SOTA
B-MVPS [36] on POT2.

B-MVPS Ours Ground-Truth

Figure 4. Colored Wireframe qualitative comparison with SOTA
B-MVPS [36] on READING.



BEAR NeRF Park et al. 2016 Li et al. 2020 Ours
Figure 5. Qualitative mesh comparison on BEAR.

BUDDHA NeRF Park et al. 2016 Li et al. 2020 Ours
Figure 6. Qualitative mesh comparison on BUDDHA.

COW NeRF Park et al. 2016 Li et al. 2020 Ours
Figure 7. Qualitative mesh comparison on COW.

POT2 NeRF Park et al. 2016 Li et al. 2020 Ours
Figure 8. Qualitative mesh comparison on POT2.

READING NeRF Park et al. 2016 Li et al. 2020 Ours
Figure 9. Qualitative mesh comparison on READING.
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