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Abstract

Here, we extend the experimental section from the main paper. Our supplementary document is organized as follows: First,
we present the visual comparison of the rendered images with our method and other view synthesis methods. We also show
the advantage of using surface normals via training and validation curves. The following sections provide further analysis
by comprehensive experiments. Concretely, we demonstrate the effect of change in the light source direction between the
frames on NeRF [2]. We also investigate the importance of viewing directions and sampling strategy on our method. Later,
we provide some additional implementation details related to our method. Finally, we reemphasize the main motivation of
this work in the concluding remarks section.

1. Comparison with View Synthesis Methods
In this section, we compare rendering performances of view-synthesis methods.

Visual Comparison. Fig.1 shows the images rendered by IDR [4], NeRF [2] and our method. All the methods use the
DiLiGenT-MV images captured with the same light source. We observed that the IDR method fails to capture the geometry
and appearance information with this setting. The NeRF method performs much better than IDR; however, the rendered
images are often blurry and lack surface details. We observed that our method performs significantly better than both methods,
and it can generate important details of the object. For example, our approach renders the nose of the BEAR and the eyes of
the BUDDHA very accurately. These details are not apparent with NeRF due to the missing surface normal information in
rendering.
Training and Validation Analysis. Our method combines photometric stereo surface normals in the continuous volume
rendering process for better image rendering. The surface normals obtained using the photometric stereo take care of shading
in the image formation process. And therefore, it can be observed from the plots presented in Fig.2, that our method clearly
shows better convergence behavior. In addition to the BUDDHA scene presented in the main paper, we analyze the loss
curves of the remaining DiLiGenT-MV objects. Fig.2 shows the training and validation curves of our method and NeRF for
BEAR, COW, POT2, and READING. Our method has a lower loss value in all of the categories, indicating that the image
rendering quality is better.

2. Effect of Multiple Light Sources on NeRF
We want to study the effect of change in the light source direction over MVPS images. This setting has not been studied

before, where the light is different across images that are captured from multiple views. To simulate this experiment, the
subject in the scene should have the appropriate material properties and surface area to show the change of light direction
over images. In this paper, to conduct this experiment, we choose the suitable example that has complex surface profile and
has significant surface area to really capture the effects of change in the light source direction across images. Hence, we
choose COW and BUDDHA as suitable examples from DiLiGenT-MV dataset to simulate this experiment.

NeRF enforces the learned scene representation to be multi-view consistent by learning position-dependent volume density
σ, and it renders images by taking view direction into account. For this reason, having constant lighting on the scene is
required, and the core idea of the method is questionable if lighting varies across camera viewpoints. In this section, we study
the behavior of NeRF under multiple light sources. For our experiment, we assign a different light source for each camera
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viewpoint. To be precise, we randomly pick 20 light sources from 96. Table 1 compares the 3D reconstruction accuracy
achieved using images from the same light source and multiple sources.

Method BUDDHA COW
NeRF with single light source 0.99 0.9

NeRF with multiple light sources 1.30 1.06
Table 1. Comparison of reconstruction accuracy achieved by NeRF with single light source and multiple light sources. We report Chamfer-
L1 distance for the comparison.

3. Effect of Viewing Direction
Here, we want to study the effect of viewing direction on rendered image quality obtained using our method for this

experiment. To that end, we remove view direction information γ(d) from our MLP. Table 2 compares the quality of image
rendering with and without view dependence. As expected, the image quality sharply decreases without the view direction.
So we conclude that similar to surface normals, view direction is also crucial for the rendering.

Method BEAR BUDDHA COW POT2 READING
Ours without view dependence 31.71 29.76 30.26 30.28 29.41

Ours with view dependence 37.16 33.59 34.49 30.47 30.46
Table 2. Quantitative image rendering quality measurement with PSNR metric with and without view dependence (The higher the better).

4. Effect of Volume Sampling
Our method uniformly samples points along the ray between near and far bounds tn, tf . Increasing the number of these

query points enables a denser evaluation of the network. Still, it is computationally not feasible to sample a lot of points
uniformly. To make the process more efficient, we use a two-stage hierarchical volume sampling strategy by optimizing
coarse and fine networks simultaneously. For that, we first consider the coarse network rendering:

C̃c(r) =
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We calculate weights ŵi(xi) = wi(xi)/
∑Nc

j=1 wj(xj) to have a probability density function on the ray. Then, we
sample fine points from this distribution using inverse transform sampling. For the coarse network, we sample Nc = 64
points uniformly. For the fine network, we sample Nf = 128 points by taking the coarse network weights into account.

To show the effectiveness of our two-stage sampling strategy, we simulate an experiment. To that end, we remove fine
sampling from our approach and evaluate the performance by using only the uniformly sampled points. Table 3 reports the
3D reconstruction accuracy using 64 and 256 coarse samples only, as well as the two-stage approach of using both coarse
and fine sampling. The results suggest that choosing Nc and Nf introduces a better trade-off between computation time and
accuracy.

Volume Sampling BEAR BUDDHA COW POT2 READING
Nc = 64, Nf = 0 0.85 1.45 0.86 0.63 1.38
Nc = 256, Nf = 0 0.68 0.92 1.01 0.64 1.64
Nc = 64, Nf = 128 0.66 1.00 0.71 0.63 0.82

Table 3. Reconstruction accuracy achieved with different number of points. We provide scores using Chamfer-L1 distance metric.

5. Additional Implementation Details
Deep Photometric Stereo Network: The deep photometric stereo network is trained on the synthetic CyclesPS dataset [1].
CyclesPS has 15 different shapes, and for each shape, three sets of images are rendered with varying material properties.
For training, the effect of different light sources on each pixel is represented using an observation map. The data is further
augmented by applying ten different rotations. Concretely, the same rotation is applied to the observation maps and corre-
sponding ground-truth normals. The idea is that rotation of surface normals, and light directions around the view direction of
photometric stereo setup do not alter the image value for the isotropic surfaces. For more information, we refer the readers
to CNN-PS work [1].
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The observation maps are rotated ten times by uniformly picking angles in the range [0, 360] during testing. We run
inference on each observation map separately and aggregate the results by simply applying inverse rotations. We then
average and normalize these vectors to get the per-pixel normal estimate. This strategy improves the accuracy of the normal
estimations.
MLP Optimization for MVPS: Our MLP is implemented using PyTorch [3]. While comparing our method against other
standalone MVS methods, we picked the images coming from the same light source in the DiLiGenT-MV dataset. We ob-
served that the fourth light source provides a consistent surface profile image throughout the image sequence. And therefore,
we use it for evaluating all MVS methods. Our method and NeRF also require a common threshold value for getting the
3D. For this reason, we extracted meshes using density thresholds of 1, 5, 10, 20, 50, and 100 using NeRF method. We
observed that choosing the density threshold of 10 results in the best performance for NeRF, and therefore we applied the
same threshold to our method during mesh extraction.

6. Concluding Remarks
Firstly, we want to indicate that MVPS is not an ordinary 3D data acquisition setup that can be realized with common

commodity cameras. It requires sophisticated hardware, and special care must be taken to calibrate cameras and lights.
Only then, it becomes possible to acquire 3D and render scenes accurately. Secondly, we want to emphasize again that
MVPS is generally solved using a sequence of involved steps. Hence, the main motivation of this work is to utilize the
modern approach for the classical MVPS problem and explore how far we can go with it (with a framework that is as simple
as possible). This work shows that we can get closer to state-of-the-art multi-stage MVPS methods with a much simpler
framework by leveraging the continuous volumetric rendering approach. All in all, this work provides a new way to solve
MVPS, and maybe working on such ideas can help us come up with a better and a simpler way to recover 3D from MVPS
images.
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BEAR

BUDDHA

COW

POT2

READING

IDR NeRF Ours Ground-Truth

PSNR: 4.43 PSNR: 29.97 PSNR: 37.16
LPIPS: 0.2370 LPIPS: 0.0235 LPIPS: 0.0122

PSNR: 9.87 PSNR: 29.00 PSNR: 33.59
LPIPS: 0.2261 LPIPS: 0.0455 LPIPS: 0.0162

PSNR: 9.15 PSNR: 30.80 PSNR: 34.49
LPIPS: 0.1571 LPIPS: 0.0192 LPIPS: 0.0134

PSNR: 7.71 PSNR: 28.88 PSNR: 30.47
LPIPS: 0.1662 LPIPS: 0.0269 LPIPS: 0.0258

PSNR: 6.66 PSNR: 28.12 PSNR: 30.46
LPIPS: 0.1815 LPIPS: 0.0346 LPIPS: 0.0311

Figure 1. Visual comparison on DiLiGenT-MV renderings achieved by IDR [4], NeRF [2] and our method. Without surface normals, NeRF
lacks in details and produces blurry renderings. On the other hand, our method is able to recover fine details and render accurate images
by blending surface normal information in volume rendering process. We observed that IDR framework cannot recover the geometry and
appearance on this benchmark.
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(a) BEAR (b) COW

(c) POT2 (d) READING

Figure 2. Training and validation curves of BEAR (a), COW(b), POT2(c) and READING(d) using our method and NeRF. Our method
consistently shows better convergence behavior with the contribution of the surface normal information.5


