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Shape Reconstruction

➢ We propose a simple and general solution for the MVPS problem.

➢ We use a continuous volumetric rendering approach that uses the local density

gradient effects in MVPS image formation.

➢ We procure the surface normals using a deep photometric stereo (PS) network to

handle surfaces with complicated BRDF’s.

➢ Our method blends the predicted surface normals with a multi-view neural radiance

field representation to recover the object’s surface geometry.

Contributions

➢ Our method performs better than the standalone approaches and is comparable to the multi-stage fusion

methods despite being a much simpler approach to implement and realize.
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Fully-Connected LayerTransition Layer: ReLU+Conv(1×1)+Dropout(0.2)+Ave.Pool. Dense Block Layer: ReLU+Conv(3×3)+Dropout(0.2)Conv(1×1)
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Multi-View Stereo (MVS) Photometric Stereo (PS)

Lacks fine details

Excellent at recovering fine detials

Global shape ambiguity

➢ Multi-view photometric stereo (MVPS) setup utilizes the complementary behavior of

MVS and PS for better recovery of the 3D shape.

Complex multi-stage design → difficult to execute

Explicit mathematical modeling → limits the applicability on complicated BRDF’s

Existing MVPS methods depend on:

Quantitative 3D reconstruction accuracy comparison against the competing methods on DiLiGenT-MV 

benchmark [Li et al. 2020]. We used Chamfer-L1 metric to compute the accuracy.

NeRF Ours Ground-truth

PSNR: 29.00

LPIPS: 0.0455

PSNR: 33.59

LPIPS: 0.0162

➢ Without surface normals, NeRF lacks in details and produces blurry renderings.

➢ Our method recovers fine surface details and renders accurate images by

blending surface normal information in the volume rendering process.
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