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Abstract

Our supplementary material extends the experimental
analysis presented in the main paper. To this end, we first
demonstrated the high-frequency details of our method’s 3D
reconstructions. Next, an analysis of our method’s perfor-
mance under imaging noise is presented. Additionally, a
brief description of the classical image formation PS model
is outlined emphasizing the challenges with it to model the
object with different material surfaces and the BRDF’s role.
Finally, we provide a detailed description of our deep-PS
and deep-MVS networks for completeness. For convincing
comparison showing the advantage of our approach, we
provide a supplementary video clip. We urge the readers
to view our supplementary video.

1. Additional Results

(a) High-Frequency Details. Here, we extend the qualita-
tive comparison provided in the main paper by demonstrat-
ing the high-frequency details of our 3D reconstructions.
Fig.1 visually compares the 3D reconstructions obtained by
our method and other MVPS methods, focusing on the ear
of Buddha object. Clearly, our method recovers fine details
that are missing in other methods and provides outstanding
3D reconstructions. For more of such results, refer to our
supplementary video.

(b) Effect of Image Noise. The performance of MVPS is
indeed affected by the image noise. With this study, we
investigate the influence of image noise on our 3D recon-
struction quality. To that end, we add zero-mean Gaussian
noise to our input images with various standard deviations
σ̄. In Fig.2, we show F-score metric results as a function
of its distance error threshold ϵ on Buddha, Pot2 and Read-
ing categories of DiLiGenT-MV [11]. It can be observed
that our method performs best under noiseless setting and
the reconstruction accuracy slightly drops with increasing
noise. From these results, we conclude that our method is
robust to noise and provides reliable results under challeng-
ing scenarios.
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2. Image Formation and BRDF.
Photometric stereo (PS) methods predict the surface nor-

mals of an object from its images captured under different
illumination conditions. The classical setup for PS assumes
distant j point light sources at direction lj and intensity
ej . Under this configuration, the image intensity of surface
point pi observed at the viewing direction v is modeled as
follows:

Xv
j (pi) = ej · ρ

(
ni(pi), lj ,v

)
· ζa

(
ni(pi), lj

)
· ζc(pi)

(1)
Here, ζa(ni(pi), lj) = max(ni(pi)

T lj , 0) accounts for the
attached shadow, and ζc(pi) ∈ {0, 1} assigns 0 or 1 value
to pi depending on whether it lies in the cast shadow region
or not. The reflectance of the material is modeled by ρ()
which stands for the bidirectional reflectance distribution
function (BRDF). Modeling BRDF of a general object sur-
face is a challenging problem while solving PS, and there-
fore, isotropic material assumption is commonly used.

Isotropy assumes that the reflectance of the material is
identical if it is rotated around the surface normal vector
(see Fig.3). Although having this assumption helps in the
recovery of surface normals of some objects, materials such
as wood or brushed metal do not exhibit such symmetric be-
havior in their BRDF. For these materials, imaging changes
substantially when the material is moved or rotated. There-
fore, simply applying the provided image formation model
for surface normal estimation is not always an option. To
overcome this limitation, we resort to volume rendering.
Volume rendering approach models the radiance not only at
a surface point but along the ray by taking transmittance of
the material into account. In contrast to analytical BRDF
representations, material properties are implicitly learned
by the network. Hence, volume rendering can model com-
plex light phenomena and generalize well to anisotropic and
the glossy materials.

3. Network Design
Although we have introduced the deep-PS and deep-

MVS networks in the main paper, we provide a detailed
description of network designs for completeness.



Figure 1. Visual comparison of MVPS reconstructions on Buddha category, demonstrating the benefit of our approach in recovering high-
frequency details.
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Figure 2. 3D reconstruction quality of Buddha, Pot2 and Reading objects with varying degree of image noise. We use F-score as a function
of distance error threshold (ϵ) to report the 3D reconstruction accuracy. It can be observed that as the F-score curves gets substandard with
increase in σ̄ values.

3.1. Deep-PS Network

In this section, we provide details on the observation map
strategy, network architecture, and the dataset used to train
our Deep-PS network.

Observation Map. As mentioned in the main draft, we
use the observation map representation introduced in [8] to
predict per-pixel surface normals form PS images X v

ps. We
define the observation map Ωv

i ∈ Rω×ω at each pixel i and
view v as a 2D matrix containing the intensity values due
to different light source illuminations (see Fig.4). Precisely,
we use the following formulation to construct an observa-
tion map:

Ωv
i

(
ξ
(
ω · (lj(x) + 1)

2

)
, ξ
(
ω · (lj(y) + 1)

2

))
= ηi

Xv
j (pi)

ej
(2)

Here, ω stands for the size of the observation map, lj =
[lj(x), lj(y), lj(z)]

T ∈ R3×1 is the light source direction,
ηi = max(e1/X

v
1 (pi), . . . , eL/X

v
L(pi)) is a scaling factor

for normalization, L is the total number of light sources and
ξ : R 7→ Z+

0 is a rounding operation to have integer values.
Note that there is a bijective mapping between a light source
direction vector and its projection onto x − y coordinate
system. This allows us to represent PS image information



Figure 3. Under the isotropy assumption, the measured pixel intensity is invariant to the joint rotation of surface normal n and light source
direction l around the viewing direction v. Such an assumption though suited for a reasonable category of objects but is not applicable for
glossy and anisotropic material objects.

in a simple and effective way via an observation map.

Network Architecture. The network first takes a per-pixel
observation map Ωv

i as input and applies a 3 × 3 convolu-
tion layer for feature extraction. Then, a dense block with
two convolution layers and ReLU activation is applied. It
is later followed by a transition block. The transition block
consists of a 1 × 1 convolution layer with ReLU activation
and an average pooling layer. After the transition, a second
dense block is used. The features extracted from the second
dense block are processed by one convolution and two fully
connected layers. The output is normalized to unit length
to obtain a surface normal vector. Note that we additionally
use dropout with probability pmc = 0.2 after convolution
and fully-connected layers to have prediction uncertainty at
the test time [5, 6].

Training Dataset. We trained our deep-PS network using
the CyclesPS dataset [8]. CyclesPS is a synthetic dataset
of 15 object shapes. Each object shape is rendered with
specular, diffuse, and metallic material reflectances which
exhibit isotropic BRDF properties. The objects are illumi-
nated by 1300 distinct light sources for rendering. To train
our network using this dataset, we first constructed obser-
vation maps Ωv

i with size ω = 32 for all the object pixels.
Then, we used 90% of the per-pixel observation maps in the
training set and used the remaining 10% in the validation
set. We trained the network by 10 epochs using Adam opti-
mizer [10] and learning rate of 0.1 to minimize the training
loss shown in Eq:(3) of the main draft.

3.2. Deep-MVS Network

In this section, we introduce the PatchMatchNet [13]
network design that is used to predict per-pixel depth val-
ues from MVS images Ymv . The network mainly con-
sists of multi-scale feature extraction, learning-based Patch-
match, and depth refinement modules. Before describing
each module separately, let’s denote a reference frame by

Y r ∈ Ymv , source frames by Y s ∈ Ymv and {Rr,s, tr,s}
as the relative rotation and translation between frames r
and s. Note that for each reference frame, there exist Ns

source frames. Given these inputs, the PatchMatchNet pre-
dicts the dense depth map corresponding to the reference
view r iteratively using a coarse-to-fine strategy. Precisely,
the learning-based Patchmatch is applied on three coarse
stages, i.e. k = 3, 2, 1 where k = 3 is the coarsest stage. At
the finest level (k = 0) depth refinement module is applied
instead of learning-based Patchmatch. For simplicity of our
method description, we do not denote the stage number in
our notation.
Multi-scale Feature Extraction. Given the reference and
source images of spatial resolution w × h, feature maps φr

and φs are extracted at different levels inspired by the Fea-
ture Pyramid Network [12]. Precisely, the extracted fea-
ture maps have the spatial dimension of (w/2k) × (h/2k)
at stage k.
Learning-based Patchmatch. Inspired by the traditional
Patchmatch [2], the learning-based Patchmatch module iter-
atively performs initialization, propagation, and evaluation
steps to generate and update depth hypotheses, which are
then used for depth regression.
(i)Initialization: At the first iteration of the algorithm, 48
depth hypotheses are randomly generated at each pixel. The
hypotheses are sampled such that their distribution is uni-
form on the inverse depth range. As the initialization is not
required for the subsequent iterations, local perturbations
are applied instead to expand the existing hypotheses. For
that, additional 16 hypotheses are generated at stage k = 3
and 8 hypotheses are generated at stages k = 2 and k = 1.
(ii)Propagation: The generated depth hypotheses are aug-
mented such that the hypotheses belonging to the same
physical surface are encouraged to have similar depth val-
ues. To that end, a CNN based on Deformable Convolution
Network [4] implementation is used to learn a 2D offset for
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Figure 4. Illustration of observation maps corresponding to the pixel marked with yellow color. Each element of the observation map
corresponds to the image intensity measured under different lighting. For a glossy surface, an observation map clearly reveals the specular
region, providing strong cues for reliable prediction of surface normals. On the other hand, anisotropic surfaces exhibit more irregular
distribution w.r.t. light source directions, which makes it difficult to predict surface normals reliably.

each pixel i using the feature map φr. Accordingly, new
depth hypotheses dp are obtained as follows:

dp(oi) = {d(oi + κj + κ̃j(oi))}
Np

j=1 (3)

where oi is the coordinates of pixel i, d is depth from pre-
vious iteration, κj is a fixed offset and κ̃j(oi) is the learned
offset for hypothesis j. In this way, Np = 16 and Np = 8
hypotheses are generated at stages k = 3 and k = 2 respec-
tively.

(iii)Evaluation: In this step, the existing depth hypotheses
are evaluated to obtain a matching cost which is used for
depth regression. To that end, source features φs(oi) are
first warped to the reference frame r via differentiable warp-
ing. The warped source feature map φs(os,j

i ) is then used to
compute the similarity. For that, the feature channels are di-
vided into G groups and group-wise similarity is calculated
as follows:

Γg
s(oi, j) =

G
u

< φr
g(oi), φ

s
g(o

s,j
i ) > (4)

Here, u is the number of feature channels and < ·, · > is the
inner product operation. The initial similarity values are fed
to a 3D convolution layer with 1× 1× 1 kernel size to have
a visibility estimation Ws ∈ Rw×h×H where H denotes
the number of depth hypotheses. Then, per-pixel visibility
weight is computed as ws(oi) = max({Ws(oi, j)}Hj=1).
Next, the group similarities Γg

s(oi, j) are weighted over Ns

source images using ws(oi). By applying a 3D convolu-
tion with kernel size 1 × 1 × 1, these weighted group sim-
ilarities are converted into a matching cost per hypothesis
J ∈ Rw×h×H. This cost is aggregated over a spatial win-
dow adaptively based on the strategy used in Patchmatch
stereo [3] and AANet [14]. The resulting matching cost J
is then used to regress depth as shown in Eq:(2) of the main
draft.

Depth Refinement. The finest stage of the learning-based
Patchmatch module (k=1) provides depth D in the spatial

resolution of (w/2) × (h/2). Instead of applying another
stage of Patchmatch, the output depth is obtained by a re-
finement module which uses the RGB image to up-sample
the depth to the finest resolution of w × h. For that, a net-
work based on MSG-Net [7] is used to estimate a depth
residual. The residual is added to the up-sampled depth D
to have the output refined depth map Dref .

Training. The deep-MVS network is trained on DTU MVS
dataset [1] which consists of 80 scenes. For each scene,
there exists 49 to 64 images from different viewpoints. The
ground-truth depth maps and camera calibrations are pro-
vided for each view. The training and test splits are used as
introduced in [9]. To train the network, the l1 loss between
the predicted and the ground-truth depth are used at each
stage using the following loss function:

Lpmnet = Lref +

3∑
k=1

Nk
iter∑

t=1

Lk
t (5)

Here, Lref is the refined depth loss and Lk
t stands for the

loss at iteration t of stage k. For training on DTU dataset,
the network is trained for 8 epochs using Adam optimizer
[10] and a learning rate of 10−3. The number of source im-
ages is set to Ns = 4 and number of iterations at each stage
is set to N3

iter = 2, N2
iter = 2, N1

iter = 1. For more details on
the network architecture and training, refer to [13].
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